- webpack是基于入口的。webpack会自动地递归解析入口所需要加载的所有资源文件
- 不同的Loader来处理不同的文件,用Plugin来扩展webpack功能
Webpack 的运行流程是一个串行的过程,从启动到结束会依次执行以下流程:
1.初始化参数:从配置文件和 Shell 语句中读取与合并参数,得出最终的参数;
2.开始编译:用上一步得到的参数初始化 Compiler 对象,加载所有配置的插件,执行对象的 run 方法开始执行编译;
3.确定入口:根据配置中的 entry 找出所有的入口文件;
4.编译模块:从入口文件出发,调用所有配置的 Loader 对模块进行翻译,再找出该模块依赖的模块,再递归本步骤直到所有入口依赖的文件都经过了本步骤的处理;
5.完成模块编译:在经过第4步使用 Loader 翻译完所有模块后,得到了每个模块被翻译后的最终内容以及它们之间的依赖关系;
6.输出资源:根据入口和模块之间的依赖关系,组装成一个个包含多个模块的 Chunk,再把每个 Chunk 转换成一个单独的文件加入到输出列表,这步是可以修改输出内容的最后机会;
7.输出完成:在确定好输出内容后,根据配置确定输出的路径和文件名,把文件内容写入到文件系统。
Loader像一个"翻译官"把读到的源文件内容转义成新的文件内容,并且每个Loader通过链式操作,将源文件一步步翻译成想要的样子。
编写Loader时要遵循单一原则,每个Loader只做一种"转义"工作。
每个Loader的拿到的是源文件内容(source),可以通过返回值的方式将处理后的内容输出,也可以调用this.callback()方法,将内容返回给webpack。
还可以通过 this.async()生成一个callback函数,再用这个callback将处理后的内容输出出去。
此外webpack还为开发者准备了开发loader的工具函数集——loader-utils。相对于Loader而言,Plugin的编写就灵活了许多。
webpack在运行的生命周期中会广播出许多事件,Plugin 可以监听这些事件,在合适的时机通过 Webpack 提供的 API 改变输出结果。

首先要知道server端和client端都做了处理工作
1.第一步,在 webpack 的 watch 模式下,文件系统中某一个文件发生修改,webpack 监听到文件变化,
根据配置文件对模块重新编译打包,并将打包后的代码通过简单的 JavaScript 对象保存在内存中。
2.第二步是 webpack-dev-server 和 webpack 之间的接口交互,而在这一步,主要是 dev-server 的中间件 webpack-dev-middleware 和
webpack 之间的交互,webpack-dev-middleware 调用 webpack 暴露的 API对代码变化进行监控,并且告诉 webpack,将代码打包到内存中。
3.第三步是 webpack-dev-server 对文件变化的一个监控,这一步不同于第一步,并不是监控代码变化重新打包。当我们在配置文件中配置了devServer.watchContentBase 为 true 的时候,Server 会监听这些配置文件夹中静态文件的变化,变化后会通知浏览器端对应用进行 live reload。
注意,这儿是浏览器刷新,和 HMR 是两个概念。
4.第四步也是 webpack-dev-server 代码的工作,该步骤主要是通过 sockjs(webpack-dev-server 的依赖)在浏览器端和服务端之间建立一个 websocket
长连接,将 webpack 编译打包的各个阶段的状态信息告知浏览器端,同时也包括第三步中 Server 监听静态文件变化的信息。浏览器端根据这些 socket
消息进行不同的操作。当然服务端传递的最主要信息还是新模块的 hash 值,后面的步骤根据这一 hash 值来进行模块热替换。
5.webpack-dev-server/client 端并不能够请求更新的代码,也不会执行热更模块操作,而把这些工作又交回给了 webpack,webpack/hot/dev-server
的工作就是根据 webpack-dev-server/client 传给它的信息以及 dev-server 的配置决定是刷新浏览器呢还是进行模块热更新。当然如果仅仅是刷新浏览器,
也就没有后面那些步骤了。
6.HotModuleReplacement.runtime 是客户端 HMR 的中枢,它接收到上一步传递给他的新模块的 hash 值,它通过 JsonpMainTemplate.runtime
向 server 端发送 Ajax 请求,服务端返回一个 json,该 json 包含了所有要更新的模块的 hash 值,获取到更新列表后,该模块再次通过 jsonp 请求,
获取到最新的模块代码。这就是上图中 7、8、9 步骤。
7.而第 10 步是决定 HMR 成功与否的关键步骤,在该步骤中,HotModulePlugin 将会对新旧模块进行对比,决定是否更新模块,在决定更新模块后,
检查模块之间的依赖关系,更新模块的同时更新模块间的依赖引用。
8.最后一步,当 HMR 失败后,回退到 live reload 操作,也就是进行浏览器刷新来获取最新打包代码。
- 压缩代码。删除多余的代码、注释、简化代码的写法等等方式。可以利用webpack的
UglifyJsPlugin
和ParallelUglifyPlugin
来压缩JS文件, 利用cssnano
(css-loader?minimize)来压缩css - 利用CDN加速。在构建过程中,将引用的静态资源路径修改为CDN上对应的路径。可以利用webpack对于
output
参数和各loader的publicPath
参数来修改资源路径 - 删除死代码(
Tree Shaking
)。将代码中永远不会走到的片段删除掉。可以通过在启动webpack时追加参数--optimize-minimize
来实现 - 提取公共代码。
- 多入口情况下,使用
CommonsChunkPlugin
来提取公共代码 - 通过
externals
配置来提取常用库 - 利用
DllPlugin
和DllReferencePlugin
预编译资源模块 通过DllPlugin
来对那些我们引用但是绝对不会修改的npm包来进行预编译,再通过DllReferencePlugin
将预编译的模块加载进来。 - 使用
Happypack
实现多线程加速编译 - 使用
webpack-uglify-parallel
来提升uglifyPlugin的压缩速度。 原理上webpack-uglify-parallel
采用了多核并行压缩来提升压缩速度 - 使用
Tree-shaking
和Scope Hoisting
来剔除多余代码